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A CFD case study is presented to
demonstrate a methodology of
topology optimization. A flow cell with
non-uniform thickness profile is
prepared in ANSYS DesignModeler
using parametric surfacing techniques.
Flow characteristics and uniformity are
evaluated using ANSYS CFX. Geometric
design variations are explored then
refined to satisfy performance criteria
using Design of Experiments and
optimization routines in ANSYS
DesignXplorer.




NWSSHE Introduction

Demonstrate a methodology to optimize fluid behavior by
introducing a variable thickness shape profile to a flow
channel.

The focus of this discussion is on:

 Preparing a model to solve quickly and accurately without
failure for a large set of parameters.

* Detailing a typical optimization procedure

This methodology is relevant for many industrial applications
and can be adapted to different types of simulation. It has
been demonstrated to significantly enhance performance
for biomedical equipment and fuel cells.
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Description of Problem
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Fluid passes through a flow cell. Properties
of the fluid are measured on the
sensor surface. To obtain accurate
measurements, the fluid should have a
uniform velocity.

The baseline design features a constant O —
thickness channel with circular inlet & ; k.

ttttt

outlet.

Optimize the geometry by applying a non-
uniform thickness profile along the top
surface of the flow cell. The objective
is to improve sensor performance by
increasing flow uniformity.

5 © 2011 ANSYS, Inc. April 21, 2021



Workbench Solution Approach
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Parametric geometry is created
using DesignModeler.

A mesh with inflation boundary
is created using Workbench
Meshing

The fluid model is setup, solved,
and post-processed using
CFX.

The design space is explored
using DesignXplorer and
parameters are refined to
improve performance.
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ASSE Geometry - Overview

Parametric geometry
creation relies on a few
simple operations:

e Offset Sketching Planes
e Skin/Loft

e Merge Surface
 Boolean Unite

e Blend

* Named Selections
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Contour plot showing channel thickness



Geometry - Approach
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The variable thickness fluid domain is created using a 4x4 array of evenly-spaced control points which are
sketched over the template geometry.

16 parameter names are assigned to thickness control points (named Hij where 1<i<4 and 1<j<4).
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Geometry - Sketching Planes

8.000 (mm)

2.000 6.000

.
.
~
.

Model Yiew I Print Preview I

Parameter Manager

H1l = 0.5
H1Zz = 2
H13 = 0.7
Hld = 2

[>) 1

Face-boundary outline plane features fixed lines (black-dashed) from the scoped geometry.
Non-parametric features are spaced constrained to existing solid edge outlines.

Thickness control points are dimensioned from the sensor surface (bottom) and parameterized.
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Geometry - Skin/Loft
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Loft through a series of profiles on different planes.
This enables a robust part with parameterized thicknesses.
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Geometry — Surface Merge

The multi-faceted surface is
smoothed by merging faces.

Typically, the merge operation is
used to remove sharp edges

Tools View Help
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Geometry - Finalized

Boolean Unite:

. Merges the inlet/outlet tubes with the
channel

. Single part, continuous mesh, no
domain interfaces required

Blend Edges:
. Creates smooth transitions.

. Should follow the skin/loft operation.

Named Selections:

. Simplify setup operations
. Automatic mesh inflation

. CFX-Pre boundary conditions
. CFX-Post results evaluation

. Specified Inlet, Outlet, and
SensorSurface
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Meshing
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Default settings for the CFD physics preference, with automatic inflation enabled.

Named selection settings are modified for program controlled inflation. “SensorSurface” is
included and “Inlet/Outlet” are excluded as boundaries.

Balance conflicting objectives of obtaining reasonable solution accuracy vs. very short solution
times by running a mesh convergence study.
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CFD - Setup, Solution, Results

Outine ‘HGseaae F O0-mn Run Fluid Flow CFX 006
= (s8] Mesh view1 - Momentum and Mass
@ CFX-11.cmdb 1.08+00
# Connectivity 10801
=[] Simulation % 1.0e-02
= [&] Flow Analysis 1 2 1.0e-03
&y —_—
O Analysis Type 7’% 1.0e-04 —_—
= [#] & Flow Cel 7 Loess
[Z1 D% Triet | e
- A% opening ——-— Tt —————————— |
o g 10 15 20

~ [ PE wal

Accumulated Time Step

im Initialization
iﬂ Interfaces
= Solver
~ a"% Solution Units
- T Salver Control

| = RM5P-Mass — RMSU-Mom === RMSY-Mom RMS W-Mom

Qutput Control
;!\ Coordinate Frames
& Materials
@ Reactions
=3 @ Expressions, Functions
@ Additional Yariables
Expressions
User Functions
User Routines
=[] Simulation Control
@ Configurations
& Case Options

Z

b
0 0.008 (m) A
I

0.0045

A simple steady-state fluid analysis is setup in CFX-Pre.
The analysis solves in less than 1 minute in CFX-Solver on a mid-range workstation.

The objective of this optimization is to obtain a uniform fluid velocity along the sensor surface.
The metric used to quantify uniformity is standard deviation of fluid velocity.
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CFD - Standard Deviation

Standard deviation provides a measurement of result variation from the
mean. Uniform flow corresponds to minimized standard deviation of
velocity.

Standard deviation is not a standard function within CFD-Post.
Evaluate using expressions:
1. Calculate the number of nodes in the region.

StDev Count = count () @SensorSurface

2. Calculate the mean value of the desired variable.

StDev Mean = sum(Velocity)@SensorSurface / StDev Count

3. Define variance as the squared difference between the variable and
the mean value.

StDev Variance = sum((Velocity - StDev Mean )”*2 )(@SensorSurface / (StDev Count - 1)
4. Define standard deviation as the square root of variance.

StDev Sensor Velocity = sqrt(StDev Variance)

Additional information on these expressions is available on the ANSYS Customer Portal.
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Optimization - Summary

Optimization is implemented using ANSYS DesignXplorer, which supports
any analysis type or CAD available to Workbench.

Optimization falls under the broad approach of design exploration — the
process of understanding the relationship between design inputs and
response outputs. Common tasks include:

* What-if studies * Parameter correlation
* Design of experiments * Goal driven optimization
* Response surface modeling * Six Sigma

* Min-max search

Optimization expands on results obtained through design exploration by
predicting and verifying designs to satisfy goals using response surface
methodology.
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Optimization — Typical Workflow

1. Generate and solve DOE

2. Generate response
surface(s) and review
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6. Solve design points to
validate leading candidates
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Design of Experiments
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Design of Experiments (DOE) refers to the structured
generation of a set of data used to gain understanding on
the relationship between design variables.

A minimum number of DOE solutions are required by
DesignXplorer to build a response surface:

2 variables & 9 samples
8 variables & 81 samples
16 variables - 289 samples
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Design of Experiments

Specify ranges for all input
parameters:

0.3mm < Thickness £ 1.5mm

Full Chart

Select the DOE methodology:
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Samples are distributed
throughout the design space.

Review DOE results using
Parameters Parallel Charts

Filtered to best results
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WSS Parameter Correlation
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LSS Response Surface
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The meta model approximates the
relationship between inputs
and outputs by curve-fitting
DOE sampling data.

Benefit: Rapidly predict results for
theoretical designs without
solving hard points.

Response surface training
methodology:

Second-Order Polynomial

Kringing, Non-Parametric
Regression, Neural Network

Review & refine Goodness-of-Fit
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Goal Driven Optimization

A technique to obtain the best designs from a sample set by evaluating theoretical inputs using response
surface methodology. Weighted parameter guidance sets optimization goals and rules.

Specify objectives for output and input parameters:
* Minimize, Maximize, Relative to target
* Prioritize objectives
* Specify initial values
Screening:
* Overview of design space using random number generation
* Multiple design optimization candidates
NLPQL:
* Single-objective gradient-based optimizer

* Prone to local minima

* Single optimization design candidate
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WSS Final Results

Baseline Design Optimized Design
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The contoured thickness profile of the optimized design leads to 40% improvement in flow
uniformity at the sensor surface (StDev 0.57 mm/s compared to 0.91 mm/s).

Additional refinement iterations and more extensive parameter ranges can be incorporated to
improve results further.
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Summary
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This presentation has demonstrated how ANSYS
products & technology can be used to create robust
parametric models and solve shape optimization for
a fluid domain.

These results show that parametric modeling and
optimization techniques can be employed to rapidly
and accurately refine a product design to include
amorphous features which improve flow
characteristics.
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