ANSYS 2006 International ANSYS Conference May 2-4, 2006

Drop Test Simulation of a BGA Package: Methods & Experimental Comparison

Chris Cowan, Ozen Engineering, Inc. Harvey Tran, Intel Corporation Nghia Le, Intel Corporation Metin Ozen, Ozen Engineering, Inc.

PREVIEW

Objective: Use ANSYS implicit solver to perform a transient dynamic simulation of a PC Board (PCB) drop test. Determine strains and accelerations at several locations and compare to experimental results to confirm accuracy.

Method: Analyze a simplified model of a PCB with a single ball grid array package (BGA) and integrated heat spreader (IHS) attached at the center. Explore simulation options available in implicit ANSYS. Model is simplified in respect to materials, geometry

Practical Application: A means of obtaining accurate dynamic response and stress / strain results for a PCB. Maximize solder joint impact reliability using relative comparisons of PCB and BGA configurations.

Special Thanks: Harvey Tran and Nghia Lee at Intel for physical testing and material characterization. Dr. Metin Ozen for project support.

ENGINEERING, INC

EXPERIMENTAL STANDARD

MSYS

JEDEC* Standard JESD22-B110A

- o z engineering, inc.
- Standardized mechanical shock acceleration to reduce experimental variation

Table 1 — Subassembly free state test levels								
Service condition	Equivalent drop height (inches) / (cm)	Velocity change (in/s) / (cm/s)	Peak acceleration (G)	Pulse duration (ms)				
Н	59 / 150	214 / 543	2900	0.3				
G	51 / 130	199 / 505	2000	0.4				
В	44 / 112	184 / 467	1500	0.5				
F	30 / 76.2	152 / 386	900	0.7				
А	20 / 50.8	124 / 316	500	1.0				
Е	13 / 33.0	100 / 254	340	1.2				
D	7 / 17.8	73.6 / 187	200	1.5				
С	3 / 7.62	48.1 / 122	100	2.0				

Half-sine pulse

Table from JESD22-B110A

• "Input-G" method

* Joint Electron Device Engineering Council (JEDEC Solid State Technology Association)

•

EXPERIMENTAL STANDARD

JEDEC Standard JESD22-B111

- Standardized Experimental Drop Test Board
- 15 components • compare performance at 6 unique board locations
- PCB Young's Modulus: • 20 GPa +/-2GPa
- Mount PCB to drop test • fixture with screws through 4 holes

ANSYS, Inc. Proprietary

BOUNDARY CONDITIONS

INS

• Fixture attachment:

- Locate "fixture attachment" point as specified in JESD22-B111.
- Considered an ideal connection: no friction, no sliding
- Set X,Y,(Z) displacement = 0 (excluding displacement and force method) at appropriate location
 - According to JESD22-B111, "The screw shall be tightened until the shoulder of the screw bottoms out against the standoff."

Guidelines for Integration Time Step (ITS)

- Set ITS small enough to resolve highest mode that contributes to the response
- Using approximately 20 points per cycle of highest frequency of interest results in reasonably accurate solution for the Newmark method
- ITS = 1 / (20*f*)

TIME STEP

Example

Mode	Frequency (Hz)	Critical Time Step (s)	Total Time (s)	Total # Steps	Sample Run Time
1	202.3	2.47E-04	0.008	32	65 min
2	487.6	1.03E-04	0.008	78	100 min
3	893.9	5.59E-05	0.008	143	3 hours
6	3749.0	1.33E-05	0.008	600	14 hours

LOADING

- A variety of loading methods...
 - Acceleration
 - Static or Time Transient
 - "Input-G" standard loading vs. Experimental
 - Fixture displacement = 0
 - Applied as body load on package

Drop Impact Loading Curve

 $\begin{aligned} A(t) &= acceleration (m/s^2) \\ t &= time (s) \\ d &= duration (s) \\ P &= peak \ acceleration (m/s^2) \end{aligned}$

Simulated half-sine pulses and experimental trapezoidal pulse data

LOADING

- Loading continued
 - Displacement
 - $D(t) = \iint A(t)$
 - Boundary Conditions: @t=0, V_o=0 and D_o=0
 - Applied at fixture location
 - Complete package motion
 - Force
 - Add very large mass element to fixture location
 - Very Large = Package Mass x 1E5
 - Force = Total Mass x Acceleration
 - Complete package motion

|--|

- Coefficients calculated from % of critical damping
- Rayleigh damping coefficients (α,β)

where:

 ξ_i = critical damping ratio

 α = Rayleigh mass damping coefficient

 β = Rayleigh stiffness damping coefficient

 ω_i = natural circular frequency = $2\pi^* f_i$

 $f_i = mode frequency$

i = mode number

Analysis Type	Alpha, Beta Damping ALPHAD, BETAD	Material Dependant Damping MP,DAMP	Constant Damping Ratio DMPRAT	Modal Damping MDAMP	Element Damping(3) COMBIN7, and so on	Constant Material Damping Coefficient MP,DMPR
Static	N/A	N/A	N/A	N/A	N/A	N/A
Transient						
Full	Yes	Yes	No	No	Yes	No
Reduced	Yes	Yes	No	No	Yes	No
Mode Sup	Yes	Yes(4,6)	Yes	Yes	Yes	No

Experimental Comparison

Objective: Compare strain & acceleration results from experimental board level measurements to ANSYS simulation

C C C C C ENGINEERING, INC. N

ANSYS

O Z ENGINEERING, INC. N

ANSYS

Bottom side, viewed from top © 2006 ANSYS, Inc.

o z engineering, inc.

- ¹/₄ symmetry model
- BGA package approximated with bulk material

SIMULATION SETUP

- Material properties determined through modal analysis method
- 1% damping
- Strain & acceleration simulation results taken at single node nearest to sensor location
- ANSYS implicit solver

ENGINEERING, INC

© 2006 ANSYS. Inc.

AN

BOUNDARY CONDITIONS

ELEMENTS

MAT NIM

- ¹/₄ symmetry boundary conditions
- Fix UX,UY,UZ at exact fixture locations

ENGINEERING, INC.

© 2006 ANSYS, Inc.

Mode

1

2

3

(Hz)

259.62

578.51

ANSYS, Inc. Proprietary

ANSYS

0 Z

FREQ=259.616 727.89 0.0014 1.0000 /EXPANDED UΖ (AVG) RSYS=0 DMX =95.624 Mode 3 SMN = -7.19SMX =95.624 **AN**

NODAL SOLUTION STEP=1 SUB =3 FREQ=727.894 /EXPANDED UΖ (AVG) RSYS=0 DMX =197.694 SMN =-46.751 SMX =197.682 148.262 -197.682-111.196 -24.7161.776 -154.439 -67.953 18.533 105.019 197.682

Cumulative Frequency **Mass Fraction** Period (s) (z-direction)

NODAL SOLUTION 0.0017 0.8515 STEP=1 SUB =1

0.0039 0.8514

MODAL ANALYSIS

- Experimental data shows primary • oscillating frequency = 259.94 Hz.
- 0.1% Difference •

LOADING CONDITIONS

- Loads as recorded on testing table
- Trapezoidal shock profile
- 50 G, 11ms

ACCELERATION

Acceleration = Second Derivative UZ + Table Input

ANSYS

o z

N

ENGINEERING, INC.

STRAIN ROSETTE #1

Calculate Principal Strains (Plane Stress)

ANSYS

0 Z

ENGINEERING, INC.

STRAIN ROSETTE #2

Calculate Principal Strains (Plane Stress)

ANSYS

STRAIN ROSETTE #3

Calculate Principal Strains (Plane Stress)

ANSYS

0 Z

ENGINEERING, INC.

R	R	R	C			Ν	Л	Λ	R	V
				\mathbf{U}						

- Large strain gradients at rosette locations
- Rosette #1 is located on opposite side, dimensioned from chip, possible error source
- Simplified model with bulk BGA
- Rosette #1 difference (44%) is same magnitude as location difference of 1/8 inch on gradient

	During Pulse Duration	After Pulse
Accelerometer 1,2 (avg)	2%	3%
Rosette #1	44%	34%
Rosette #2	7%	5%
Rosette #3	11%	13%
Oscillating Frequency	0.1	%

NON-LINEAR BGA MODEL

ANSYS

0 Z

N

ENGINEERING, INC.

Critical Ball Plastic Work Density Evolution Through First Cycle