

Advanced Simulations of Hypertrophic Obstructive Cardiomyopathy in Human Heart using ANSYS

Can Ozcan, Vladimir Kudriavtsev, Metin Ozen

- Physiology and Pathology of Hypertrophic Obstructive Cardiomyopathy
- CFX vs Fluent for FSI Setup?
- Wall Motion in Fluent
- Setting up a 3D model
- Effect of Boundary Conditions
- Effect of Turbulence Modeling
- Effect of Coupling Relaxation Factors (Key Impactor for Convergence)
- How to setup the structural part of the FSI
- A case for CFX: Immersed Body approach

ANSYS Human Heart Physiology (i.e. Normal Condition)

- Myocytes (contracting heart muscle cells) are at their normal size
- Ventricle volume is not squeezed from sides and allow normal out-flow into aorta

ANSYS Definition of the Pathological Case

- Cardio: Heart
- Myo: Muscle
- Pathy: Disease, suffering
- Mitral leaflets are large
- Papillary muscles are more anteriorly positioned

Mechanism of dynamic outflow tract obstruction. The upper schematic shows a representation of the mitral leaflets. The elongated mitral leaflets that are drawn into the Left Ventricular Outflow Tract during early systole with midsystolic prolonged systolic anterior motion- septal contact, malcoaptation of the mitral leaflets, and the resultant posteriorly directed jet of mitral regurgitation.

S Confidential

ANSYS Motivation

2014 -> 2015

- 2014 User's Conference Presentation was performed with
 - Ideal 3D geometry -> updated to real 3D geometry
 - 2D Ideal geometry with only mitral valve -> 2D realistic geometry with both mitral and aortic valve sets
 - Boundary conditions at inlet was specified with sinusoidal velocity -> Exponential wall motion definition with Inlet and Outlet vent definition (more realistic boundary conditions)

CFX18

ANSYS Why do we used Fluent and not CFX?

Main reason is the internal re-meshing capability

- With CFX one can do re-meshing calls automatically, but this is not available for FSI setups yet
 - Fluent provides different re-meshing options like 2.5D extrusion mesh
 - Some tips about re-meshing:
 - Boundary layers in 2D does not work nicely
 - Use coarse elements near deforming regions as oscillations may result in negative volume errors
 - 2.5D re-meshing is limited to "Spring" method
 - FSI surfaces are not re-meshed and keep original mesh elements (some kind of limitation here)

ANSYS How to implement wall motion in Fluent?

UDF in C language

- MACROS
 - Interpreted (does not need compiler; can be used for boundary condition)
 - Compiled (faster, but needs compiler; needed to define wall motion)
- Visual Studio Community Compiler is free
- When you switch versions of ANSYS (i.e. from R15 to R16) you need to recompile the UDF libraries
- Compiling in different operating systems, require re-compilation and some syntax rules may change (like comments // does not work on some Linux cc compilers)

ANSYS 2D Analysis – 2.5D Analysis

- For 2D problems, one can use 2.5D remeshing in Fluent (model a 3D slice to represent the problem in 2D)
- With 2.5D remeshing one can model 3D extruded geometry as well
- 2.5D surface re-meshing method only applicable to along line extrusions
- Only triangular surfaces mesh is allowed (no mixed zones)
- Only Laplacian smoothing is available (kind of limitation for large wall deformations)

Effect of Boundary Conditions NNSYS[®]

Last years 2D case was performed using sinusoidal wall motion as shown below

Physiological wall motion should be related to ventricle volume change

We switch to exponential function to define the wall motion to match the ventricle volume (this still miss complex ventricle contraction, but is closer to reality)

ANSYS Effect of Boundary Conditions

Inlet velocity was specified

Opt-A: Inlet vent / Outlet vent

- Wall function is set to match volume change shown here
- Mass flow is set as derivative of volume change (rho*dV/dt)

- **Opt-B: Inlet mass flow / Outlet pressure or vent**
 - Mass flow is defined to match the ventricle volume change due to wall motion

ANSYS 3D Real Heart Mesh

- Preparation of the geometry is performed in ICEM-CFD
- Wall motion definition required a new wallmotion3D.c
- Ventricle volume is expanded with respect to a center point located in between mitral and aortic valves

ANSYS 3D Case Boundary Conditions

- Outlet condition can be specified as vent(opening) or zero pressure condition
- Inlet mass flow rate is specified to match left-ventricle volume change

$$\dot{m} = \rho \frac{\partial V}{\partial t}$$

Time Value = 0.52 [s]

ANSYS 3D Real Heart Mesh – Solution in OzenCloud

- Technology by UberCloud
- Speed-up vs number of CPU's is analyzed with a small mesh (0.2M) and a large one (4.5M cells)
- With Large Models One can appreciate speed up

	Solve Time	Speed-Up
2 CPU	7090 sec	n/a
4 CPU	6360 sec	1.1X
8 CPU	6384 sec	1.0X
16 CPU	K	

0 2M Coll Mosh

4.5M Cell Mesh

	Solve Time	Speed-Up
2 CPU		
4 CPU	81000 sec	n/a
8 CPU	45900 sec	1.75X
16 CPU		

This is mostly due to small mesh size and remeshing taking relatively longer with respect to actual flow field solution

ANSYS 2D Effect of Turbulence Model

- Laminar vs k-omega SST turbulence model differences over vorticity is provided below
- Inlet & Outlet condition with 5% Turbulent Intensity and 10 Viscosity Turbulent Viscosity Ratio
- Reynolds number hardly reaches 1E5

Viscous Model

Inviscid

C Laminar

k-omega Mode

Standard BSL

k-omega Options

Curvature Correction Production Kato-Launder Production Limiter Intermittency Transition Mode

SST

Spalart-Allmaras (1 eqn)
() k-epsilon (2 eqn)

Transition k-kl-omega (3 eqn)
Transition SST (4 eqn)

Scale-Adaptive Simulation (SAS)

Reynolds Stress (7 ean)

Large Eddy Simulation (LES)

k-omega (2 eqn)

Model Constants

Alpha*_inf

Alpha_inf

Beta*_inf

0.09

0.31

none

User-Defined Function

Turbulent Viscosit

a1

0.52

1

Mode

ANSYS Structural Setup & Boundary Conditions

- No weak springs are used but damper/spring elements are added to mitral valve tips to mimic "Papillary Muscles". In analysis this prevents collapse of mitral valve into left atrium.
- Large deflections should be turned ON (NLGEOM, ON)
- Structural boundary conditions
 - Fixed Surfaces
 - Symmetry (via frictionless support)

Some cases may converge using "stabilization" but this usually results in unrealistic deformation and is an indication of unrealistic boundary conditions

D	etails of "Analysis Settings"		
Ŧ	Step Controls		
	Solver Controls		
	Solver Type	P	ogram Controlled
	Weak Springs	0	f
	Large Deflection	O	n
Ŧ	Restart Controls		
	Nonlinear Controls	_	
	Newton-Raphson Option	Ρ	ogram Controlled
	Force Convergence	Ρ	ogram Controlled
	Moment Convergence	P	rogram Controlled
	Displacement Convergence	P	rogram Controlled
	Rotation Convergence	F	rogram Controlled
Ι.	Line Search	R	ogram Controlled
	Stabilization	R	educe
	Method	D	amping
	Damping Factor	5.	e+008
	Activation For First Substep	Ye	es
	Stabilization Force Limit	0.	.2
Ŧ	Output Controls		
+	Damping Controls		

ANSYS Structural Setup Details (Contacts)

- Contact definitions are critical to achieve robust solution in FSI setup
- Contact conditions with offset to prevent fluid elements collapsing in CFD side
- In addition to surface-to-surface contact, one should make use of edge-tosurface contacts to prevent penetration problems in valve-to-valve contact
- Stiffness factor can be decreased up to 0.01 for better convergence

-	Advanced	
	Formulation	Pure Penalty
	Detection Method	Program Controlled
	Penetration Tolerance	Program Controlled
	Normal Stiffness	Manual
	Normal Stiffness Factor	1.e-002
	Update Stiffness	Program Controlled
	Stabilization Damping Factor	0.
	Pinball Region	Radius
	Pinball Radius	5.e-002 m
	Time Step Controls	None
-	Geometric Modification	
	Interface Treatment	Add Offset, No Ramping
	Offset	5.e-004 m
	Contact Geometry Correction	None
	Target Geometry Correction	None

Contact Definition

ANSYS Effect of Coupling Relaxation Factors

- Force and displacement "under relaxation factor" values limits potential large variations which may result in divergence
- Maximum number of coupling iterations should be set to allow complete convergence within each coupling step

Outline	e of Schematic C1: System Couplin	g 🗸 4	ιx
		A	^
1	System Coupling		
2	🖃 🍂 Setup		
3	🍿 Analysis Settings		Ξ
4	Participants		
5	🗉 🙆 Fluid Flow (Fluent)		
15	🗉 🚾 Transient Structural		
16	🗉 🗁 Regions		
17	Fluid Solid Interface		
18	🗉 🗀 Data Transfers		
19	H Data Transfer		
20	H Data Transfer 2		
21	E Execution Control		
Prope	ties of DataTransfer : Data Transfe	r 👻 🖡	ιx
	A	В	
1	A Property	B Value	
1 2	A Property Source	B Value	
1 2 3	A Property Source Participant	B Value Fluid Flow (Fluent)	•
1 2 3 4	A Property Source Participant Region	B Value Fluid Flow (Fluent) valve_fsi_cfd	•
1 2 3 4 5	A Property Source Participant Region Variable	B Value Fluid Flow (Fluent) valve_fsi_cfd force	•
1 2 3 4 5 6	A Property = Source Participant Region Variable = Target	B Value Fluid Flow (Fluent) valve_fsi_cfd force	•
1 2 3 4 5 6 7	A Property Source Participant Region Variable Target Participant	B Value Fluid Flow (Fluent) valve_fs_cfd force Transient Structural	•
1 2 3 4 5 6 7 8	A Property Source Participant Region Variable Target Participant Region	B Value Fluid Flow (Fluent) valve_fsi_cfd force Transient Structural Fluid Sold Interface	•
1 2 3 4 5 6 7 8 9	A Property Source Participant Region Variable Target Participant Region Variable Variable	B Value Fluid Flow (Fluent) valve_fsi_cfd force Transient Structural Fluid Sold Interface Force	× × ×
1 2 3 4 5 6 7 8 9 10	A Property Source Participant Region Variable Target Participant Region Variable Data Transfer Control	B Value Fluid Flow (Fluent) valve_fsi_cfd force Transient Structural Fluid Sold Interface Force	•
1 2 3 4 5 6 7 8 9 10 11	A Property Source Participant Region Variable Target Participant Region Variable Data Transfer Control Transfer At	B Value Fluid Flow (Fluent) valve_fs_cfd force Transient Structural Fluid Sold Interface Force Start Of Iteration	
1 2 3 4 5 6 7 8 9 10 11 12	A Property Source Participant Region Variable Target Participant Region Variable Data Transfer At Under Relaxation Factor	B Value Fluid Flow (Fluent) valve_fs_cfd force Transient Structural Fluid Sold Interface Force Start Of Iteration 0.4	
1 2 3 4 5 6 7 8 9 9 10 11 11 12 13	A Property Source Participant Region Variable Target Participant Region Variable Data Transfer Control Transfer At Under Relaxation Factor RMS Convergence Target	B Value Fluid Flow (Fluent) valve_fs_cfd force Transient Structural Fluid Sold Interface Force Start Of Iteration 0.4 0.01	

 $\phi_{\text{Relaxed}} = \phi_{\text{Reference}} + \omega \left(\phi_{\text{Raw}} - \phi_{\text{Reference}} \right)$ Under relaxation factor

ANSYS 3D CFX using immersed boundary method

• Can be used to model physiological case (i.e. normal condition)

19

• Valve deformation cannot be captured, so not useful for modelling hypertrophic cardiomyopathy

ANSYS 3D CFX using immersed boundary method

- Can be used to model physiological case (i.e. normal condition)
- Valve deformation cannot be captured, so not useful for modelling hypertrophic cardiomyopathy

ANSYS Confidential

- 3D valve with re-meshing in Fluent can be implemented
- Realistic valve contraction input can be obtained from Cardiac MRI and applied using Fluent UDF(user defined functions)