

Realize Your Product Promise™

# **Wireless Power Transfer System Design**



Julius Saitz ANSYS



## **ANSYS** Wireless Power Transfer (WPT)

#### Near-Field (Inductive coupling, resonant)

- Do not rely on propagating EM waves
- Operate at distances less than a wavelength of transmission signal
- Resonance obtained by use of external circuit capacitor
- Electric and magnetic fields can be solved separately



#### Focus of this presentation

#### Far-Field (resonant)

- Operating range to ~10 meters
- Self capacitance of coil turns are of importance
- Requires full wave solver with coupled electric and magnetic fields



### **ANSYS** Design Challenges

#### **Magnetic Analysis**

Inductance/Resistance calculations versus frequency

- Ensure linear mode operation
- **Relative Position sensitivity study**
- Loss evaluation
- Effect of temperature on magnetic performance

#### **Circuit Analysis**

Operate in resonant mode, considering magnetic results

- Compute efficiency considering relative position
- Transient simulation considering frequency dependent effects

#### **Thermal Management**

Consider local losses distribution in thermal evaluation

Consider changing of electrical properties with temperature



Wireless Power Transfer



#### Large Gap Transformer Design Using Computational Electromagnetics

- **Combination of Circuit and Magnetic Analysis for Resonance**
- Thermal Management



# Large Gap Transformer Design Using Computational Electromagnetics



**Structural Mechanics** 

Electromagnetics

Systems and Multiphysics

### **ANSYS** Regular Transformer

- Low reluctance flux path is available
- Mutual Coupling between the coils can be easily determined using Magnetic Circuit approach
- Leakage flux can be considered to be negligible
- Mutual inductance can be derived using flux balance
- Analytical solution possible within permissible level of accuracy



#### **ANSYS** Large Gap Transformer

- No Specific path for the magnetic flux
- Leakage flux is significant enough and can not be neglected
- Analytical methods are proposed for calculation of Mutual inductance using Maxwell's formula for two coaxial circular coils

$$M = \frac{2\mu_0 \sqrt{R_p R_s}}{k} \left[ \left( 1 - \frac{k^2}{2} \right) K(k) - E(k) \right]$$



#### Application of these formulas to real life cases is almost impossible

# **Computation Electromagnetics can help to reduce problem complexity significantly**

© 2011 ANSYS, Inc. April 27, 2015

8



Maxwell is the electromagnetic field analysis software using the Finite Element Method



# **ANSYS** Transformers



Insulation – Dielectric Withstand, Maximum E-field





Load Analysis Foil Losses

3D Incremental and Apparent Inductanc

Inductance







Creep Stress

Tank Wall Losses Bus Bars





- Saturation
- Magnetic shielding
- Self and Mutual Inductance
- Coupling Coefficient





#### **ANSYS** Parametric Analysis using Maxwell









## **ANSYS** Eddy Current (Frequency domain)

- Impedance vs frequency
- State Space Model for Circuit Analysis
- Losses
- Eddy current shielding







# **Combination of Circuit and Magnetic** Analysis for Resonance

**Fluid Dynamics** 

**Structural Mechanics** 

Electromagnetics

Systems and Multiphysics

### **ANSYS** Inductive Type Coupling – Near Field

1) Electromagnetic analysis to determine R, L, M



# 2) Resonant circuit realized by a lumped capacitance parameter in the circuit simulator

## **ANSYS** System Approach with Simplorer



4.0000e-001 3.6000e-001 2.8000e-001 2.4000e-001 2.4000e-001 1.6000e-001 1.2000e-001 8.0000e-002 4.0000e-002



# Reduced Order Model (ROM)



# **ANSYS** Frequency Domain Analysis: System Level



### **ANSYS** Parametric Analysis: Frequency Domain



#### **ANSYS** Transient Analysis





#### **Output/Input Power**

#### **Tuned capacitance for each conditions**



 $P = VI \cos \theta$  $\eta = \frac{P_{out}}{P_{in}} \times 100[\%]$ Efficiency[%] 300 240 95.00 90.00 85.00 75.00 55.00 55.00 55.00 45.00 45.00 45.00 45.00 25.00 25.00 25.00 25.00 25.00 25.00 15.00 15.00 10.00 5.000 Gap [mm] 60 0 120 180 240 300 Sliding [mm] April 27, 2015 © 2011 ANSYS, Inc.

21









#### **Disk Coil type**

#### **Solenoid Coil type**

# **ANSYS** Efficiency as a function of sliding direction and distance

• Gap between coils kept constant







• Zero sliding



### **ANSYS** System Simulation – WPT





Realize Your Product Promise™

### **Thermal Management**



Structural Mechanics

Electromagnetics

Systems and Multiphysics









Temperature



ANSYS offers a comprehensive modeling solution for Wireless Power Transfer systems:

- Magnetostatic
- Frequency domain
- Circuit and system level
- Thermal



#### Wireless Power Transfer Electromagnetics



#### System Level Modeling Electromagnetic-Circuit