
Computational Fluid Dynamics	

What is Computational
Fluid Dynamics (CFD)?!

Introduction!

Computational Fluid Dynamics	

Finite Difference or!
Finite Volume Grid!

Introduction!

Computational Fluid Dynamics	

Grid must be
sufficiently fine to
resolve the flow!

Introduction!

Computational Fluid Dynamics	

Preparing the data (preprocessing):!
Setting up the problem, determining flow
parameters and material data and
generating a grid.!

Solving the problem!

Analyzing the results (postprocessing):
Visualizing the data and estimating
accuracy. Computing forces and other
quantities of interest. !

Using CFD to solve a problem:!

Introduction!

Computational Fluid Dynamics	

Numerical !
Analysis !

!
!
!
!

 Fluid!
 Mechanics!

!
!
!
!

CFD!

!
!
!
!
!
!
!
!
!

Computer!
Science!

CFD is an interdisciplinary topic!

Introduction!

Computational Fluid Dynamics	

Many website contain information about fluid
dynamics and computational fluid dynamics
specifically. Those include!
!
NASA site with CFD images!
http://www.nas.nasa.gov/SC08/images.html!
!
CFD Online: An extensive collection of
information but not always very informative!
http://www.cfd-online.com/!
!
eFluids.com is a monitored site with a large
number of fluid mechanics material!
http://www.e-fluids.com/!

Introduction!

Computational Fluid Dynamics	

Beginning of
CFD!

Computational Fluid Dynamics	

The MANIAC at Los Alamos had already stimulated considerable
interest in numerical solutions at the Laboratory. However, CFD in the
modern sense started with the formation of the T3 group. Early
development in the Group focused on:

Compressible flows: Particles in Cells (1955): Eularian –Lagrangian
method where particles move through a fixed grid

Low-speed (incompressible) flows

Vorticity streamfunction for homogeneous
(mostly 2D) flows (1963)
Marker and Cell for free surface and
Multiphase flows in primitive variables (1965)

All-speed flows—ICE (1968, 1971)

Arbitrary–Lagrangian–Eulerian (ALE) methods

CFD at Los Alamos
Beginning of CFD!

Computational Fluid Dynamics	

Incompressible flows—Vorticity-Streamfunction Method

Computations of the development of a von Karman vortex street
behind a blunt body by the method developed by J. Fromm. Time
goes from left to right showing the wake becoming unstable.

From: J. E. Fromm and F. H. HarIow, Numerical Solution of the
Problem of Vortex Street Development: Phys. Fluids 6 (1963), 975.

Beginning of CFD!

Computational Fluid Dynamics	

Incompressible flows—the MAC Method
Primitive variables (velocity and pressure) on a staggered
grid

The velocity is updated using splitting where we first ignore
pressure and then solve a pressure equation with the
divergence of the predicted velocity as a source term

Marker particles used to track the different fluids

pi-1,j+1 pi,j+1 pi+1,j+1

pi-1,j pi,j pi+1,j

pi-1,j-1 pi,j-1 pi+1,j-1

ui-1/2,j+1 ui+1/2,j+1

ui-1/2,j ui+1/2,j

ui-1/2,j-1 ui+1/2,j-1

vi-1,j+1/2

vi-1,j-1/2

vi,j+1/2

vi,j-1/2

vi+1,j+1/2

vi+1,j-1/2

fig1.pdf

The dam breaking problem
simulated by the MAC
method, assuming a free
surface. From F. H. Harlow
and J. E. Welch. Numerical
calculation of time-
dependent viscous
incompressible flow of fluid
with a free surface. Phys.
Fluid, 8: 2182–2189, 1965.

Beginning of CFD!

Computational Fluid Dynamics	

Early Publicity: Science Magazine
F.H. Harlow, J.P. Shannon,
Distortion of a splashing liquid
drop, Science 157 (August)
(1967) 547–550.

F.H. Harlow, J.P.
Shannon, J.E.
Welch, Liquid waves
by computer,
Science 149
(September) (1965)
1092–1093.

Beginning of CFD!

Computational Fluid Dynamics	

Beginning of CFD!

Computational Fluid Dynamics	

“While most of the scientific and technological world maintained a
disdainful distaste (or at best an amused curiosity) for computing, the
power of the stored-program computers came rapidly into its own at Los
Alamos during the decade after the War.”

From: Computing & Computers: Weapons Simulation Leads to the
Computer Era, by Francis H. Harlow and N. Metropolis

“Another type of opposition occurred in our interactions with editors of
professional journals, and with scientists and engineers at various universities
and industrial laboratories. One of the things we discovered in the 1950s and
early 1960s was that there was a lot of suspicion about numerical techniques.
Computers and the solutions you could calculate were said to be the
playthings of rich laboratories. You couldn’t learn very much unless you did
studies analytically.“

From: Journal of Computational Physics 195 (2004) 414–433
Review: Fluid dynamics in Group T-3 Los Alamos National Laboratory
(LA-UR-03-3852), by Francis H. Harlow

Beginning of CFD!

Computational Fluid Dynamics	

CFD goes mainstream

Early studies using the MAC method:

R. K.-C. Chan and R. L. Street. A computer study of finite-amplitude
water waves. J. Comput. Phys., 6:68–94, 1970.

G. B. Foote. A numerical method for studying liquid drop behavior:
simple oscillations. J. Comput. Phys., 11:507–530, 1973.

G. B. Foote. The water drop rebound problem: dynamics of collision.
J. Atmos. Sci., 32:390–402, 1975.

R. B. Chapman and M. S. Plesset. Nonlinear effects in the collapse of
a nearly spherical cavity in a liquid. Trans. ASME, J. Basic Eng.,
94:142, 1972.

T. M. Mitchell and F. H. Hammitt. Asymmetric cavitation bubble
collapse. Trans ASME, J. Fluids Eng., 95:29, 1973.

Beginning of commercial CFD—Imperial College (Spalding)

Computations in the Aerospace Industry (Jameson and others)

And others!

Beginning of CFD!

Computational Fluid Dynamics	

The development of computer fluid dynamics has been closely associated with the evolution
of large high-speed computers. At first the principal incentive was to produce numerical
techniques for solving problems related to national defense. Soon, however, it was
recognized that numerous additional scientific and engineering applications could be
accomplished by means of modified techniques that extended considerably the capabilities of
the early procedures. This paper describes some of this work at The Los Alamos National
Laboratory, where many types of problems were solved for the first time with the newly
emerging sequence of numerical capabilities. The discussions focus principally on those with
which the author has been directly involved.

Beginning of CFD!

Computational Fluid Dynamics	

Although the methods developed at Los Alamos were put to use in solving
practical problems and picked up by researchers outside the Laboratory,
considerable development took place that does appear to be only indirectly
motivated by it. Those development include:

Panel methods for aerodynamic computations (Hess and Smith, 1966)

Specialized techniques for free surface potential and stokes flows (1976)
and vortex methods

Spectral methods for DNS of turbulent flows (late 70’s, 80’s)

Monotonic advection schemes for compressible flows (late 70’s, 80’s)

Steady state solutions (SIMPLE, aeronautical applications, etc)

Commercial CFD

However, with outside interest in Multifluid simulations (improved VOF, level
sets, front tracking) around 1990, the legacy became obvious

Beginning of CFD!

Computational Fluid Dynamics	

Commercial
Codes!

Computational Fluid Dynamics	

CHAM (Concentration Heat And Momentum) founded in 1974
by Prof. Brian Spalding was the first provider of general-
purpose CFD software. The original PHOENICS appeared in
1981.!
!
The first version of the FLUENT code was launched in
October 1983 by Creare Inc. Fluent Inc. was established in
1988.!
!
STAR-CD's roots go back to the foundation of Computational
Dynamics in 1987 by Prof. David Gosman,!
!
The original codes were relatively primitive, hard to use, and
not very accurate.!

Commercial Codes!

Computational Fluid Dynamics	

What to expect and when to use commercial package:!
!
The current generation of CFD packages generally is
capable of producing accurate solutions of simple flows.
The codes are, however, designed to be able to handle
very complex geometries and complex industrial
problems. When used with care by a knowledgeable user
CFD codes are an enormously valuable design tool. !
!
Commercial CFD codes are rarely useful for state-of-the-
art research due to accuracy limitations, the limited
access that the user has to the solution methodology, and
the limited opportunities to change the code if needed !

Commercial Codes!

Computational Fluid Dynamics	

Major current players include!
!
Ansys (Fluent and other codes)!

! !http://www.fluent.com/	

	

 	

http://www.ansys.com/!

!
adapco: (starCD)!

! !http://www.cd-adapco.com/	

	

Others!
CHAM: !http://www.cham.co.uk/	

CFD2000: !http://www.adaptive-research.com/	

Commercial Codes!

Computational Fluid Dynamics	

A Finite Difference Code
for the Navier-Stokes
Equations in Vorticity/

Streamfunction!
Form!

http://www.nd.edu/~gtryggva/CFD-Course/!
Computational Fluid Dynamics	

!u
!t

+ u
!u
!x

+ v
!u
! y

= "
! p
!x

+
1

Re
! 2u
!x2 +

! 2u
! y2

#

$%
&

'(

!v
!t

+ u
!v
!x

+ v
!v
! y

= "
! p
! y

+
1

Re
! 2v
!x2 +

! 2v
! y2

#

$%
&

'(

!
"
"y

!
!x

!"
!t

+ u
!"
!x

+ v
!"
!y

=
1
Re

! 2"
!x2

+
! 2"
!y2

$
% &

'

! =

"v
"x

#
"u
" y

The vorticity/streamfunction equations:!

where!

Computational Fluid Dynamics	

Defining the streamfunction by!

Objectives!

! =
"v
"x

#
"u
"y

u =
!"
!y
; v = #

!"
!x

And substituting into the definition of the vorticity!

gives!

! 2"
!x2 +

! 2"
! y2 = #$

Computational Fluid Dynamics	

The system to be solved is the Navier-Stokes
equations in vorticity-stream function form are:!

Elliptic equation!

Advection/diffusion equation!

The vorticity/streamfunction equations:!

u =
!"
!y
; v = #

!"
!x

where!

!"
!t

= #
!$
! y

!"
!x

+
!$
!x

!"
! y

+
1

Re
! 2"
!x2 +

! 2"
! y2

%

&'
(

)*

! 2"
!x2 +

! 2"
! y2 = #$

Computational Fluid Dynamics	

Notation: the location of variables on a structured grid!

fi, j

fi+1, j

fi, j = f (x, y)

fi+1, j = f (x + h, y)

fi!1, j = f (x ! h, y)

fi, j+1 = f (x, y + h)

fi, j!1 = f (x, y ! h)

(x, y)

i -1 i i+1	

j+1	

	

	

 j	

	

j-1	

Finite Difference Approximations!

fi, j+1

fi!1, j

fi, j!1

Computational Fluid Dynamics	

Finite Difference Approximations!

Then we replace the equations at each grid point
by a finite difference approximation!

!"
!t

$
i, j

n

= %
!&
!y

!"
!x

$
i, j

n

+
!&
!x

!"
!y

$
i, j

n

+
1
Re

! 2"
!x 2

+
! 2"
!y2

'
(
) #

$
*
i, j

n

! 2"
!x 2

$
%
i, j

n

+
! 2"
!y 2

$
%
i, j

n

= &' i, j
n

Computational Fluid Dynamics	

! f (x)
!x

=
f (x + h) " f (x " h)

2h
"
! 3 f (x)
!x3

h2

12
+!

Finite difference approximations!

! 2 f (x)
!x2 =

f (x + h) " 2 f (x) + f (x " h)
h2 "

! 4 f (x)
!x4

h2

xx
+!

! f (t)
!t

=
f (t + "t) # f (t)

"t
#
! 2 f (t)
!t2

"t
2
+!

Finite Difference Approximations!
Computational Fluid Dynamics	

Laplacian!

! 2 f
!x2

+
! 2 f
!y2

=

fi+1, j
n ! 2 fi, j

n + fi!1, j
n

h2
+
fi, j+1
n ! 2 fi, j

n + fi , j!1
n

h2
=

fi+1, j
n + fi!1, j

n + fi, j+1
n + fi , j!1

n ! 4 fi , j
n

h2

Finite Difference Approximations!

Computational Fluid Dynamics	

The advection equation is:!

!"
!t

= #
!$
! y

!"
!x

+
!$
!x

!"
! y

+
1

Re
! 2"
!x2 +

! 2"
! y2

%

&'
(

)*

! i, j
n+1 "! i, j

n

#t
=

"
$ i, j+1

n "$ i, j"1
n

2h

%

&
'

(

)
*

! i+1, j
n "! i"1, j

n

2h

%

&
'

(

)
* +

$ i+1, j
n "$ i"1, j

n

2h

%

&
'

(

)
*

! i, j+1
n "! i, j"1

n

2h

%

&
'

(

)
*

+
1

Re
! i+1, j

n +! i"1, j
n +! i, j+1

n +! i, j"1
n " 4! i, j

n

h2

%

&
'

(

)
*

Finite Difference Approximations!
Computational Fluid Dynamics	

! i, j
n+1 =! i, j

n + "t #
$ i, j+1

n #$ i, j#1
n

2h

%

&
'

(

)
*

! i+1, j
n #! i#1, j

n

2h

%

&
'

(

)
*

+

,
-
-

+
$ i+1, j

n #$ i#1, j
n

2h

%

&
'

(

)
*

! i, j+1
n #! i, j#1

n

2h

%

&
'

(

)
*

+
1

Re
! i+1, j

n +! i#1, j
n +! i, j+1

n +! i, j#1
n # 4! i, j

n

h2

%

&
'

(

)
*
.

/
0
0

The vorticity at the new time is given by:!

Finite Difference Approximations!

Computational Fluid Dynamics	

! i+1, j
n +! i"1, j

n +! i, j+1
n +! i, j"1

n " 4! i, j
n

h2 = "# i, j
n

The elliptic equation is:!

! 2"
!x2 +

! 2"
! y2 = #$

Finite Difference Approximations!
Computational Fluid Dynamics	

The Driven Cavity Problem!
!
We will now use this
approach to solve for the flow
in a driven cavity. The driven
cavity is a square domain
with a moving wall at the top
and stationary side and
bottom walls. The simple
geometry and the absence of
in and outflow makes this a
particularly simple and
popular test problem.!

The Driven Cavity Problem!

Moving wall!

Stationary wall!

St
at

io
na

ry
 w

al
l!

St
at

io
na

ry
 w

al
l!

Computational Fluid Dynamics	

Since the boundaries
meet, the constant
must be the same on
all boundaries!

! = Constant

Boundary Conditions for the Streamfunction!
Computational Fluid Dynamics	

i=1! i=2! i=NX!
j=1!
j=2!

j=NY!

! i, j and " i , j Grid
boundaries
coincide
with domain
boundaries!

Discretizing the Domain!

To compute an approximate solution numerically,
we start by laying down a discrete grid:!

stored at
each grid
point!

Computational Fluid Dynamics	

These equations allow us to obtain the solution at
interior points!

! i, j = 0

i=1! i=2! i=nx!
j=1!
j=2!

j=ny!

on the boundary!

Need vorticity
on the

boundary!!

Finite Difference Approximations!
Computational Fluid Dynamics	

Boundary Conditions for the Streamfunction!

To update the vorticity in the interior of the domain, we need
the vorticity at the wall. Once the streamfunction (and thus the
velocity) everywhere has been found, this can be done. !
!
At the bottom wall:!

! = "v
" x

! "u
" y

= ! "u
" y

Since the normal
velocity is zero!

Where the velocity can be found from the streamfunction!

u = !"
! y

Computational Fluid Dynamics	

i -1 i i+1	

Discrete Boundary Condition!

j=3	

	

j=2	

	

j=1	

!wall = ! i, j=1

Uwall

Consider the bottom wall (j=1):!
Need to find!

The velocity at j=3/2 can be found
by centered differences:!

u(i, 3

2) =
!"
! y

#
" (i,2) $" (i,1)

h

! (i,1) = "
#u
y

$
u(i, 3

2) " u(i,1)
h / 2

=
"2
h

% (i,2) "% (i,1)
h

"Uwall

&
'(

)
*+

The vorticity is then found by
one-sided differences!

Similar expressions
can be found for
the other walls!

Computational Fluid Dynamics	

! i, j
n+1 = 0.25 (! i+1, j

n +! i"1, j
n +! i, j+1

n +! i, j"1
n + h2# i, j

n)

! i+1, j
n +! i"1, j

n +! i, j+1
n +! i, j"1

n " 4! i, j
n

h2
= "# i, j

n

The elliptic equation:!

Rewrite as!

Solving the elliptic equation!

Solve by SOR!

! i, j
" +1 = #0.25 (! i+1, j

" +! i$1, j
" +1 +!i, j+1

" +! i, j$1
" +1 + h2% i, j

n)

+ (1$#)! i, j
"

Computational Fluid Dynamics	

Solve for the stream function!

Find vorticity on boundary!

Find RHS of vorticity equation!

Initial vorticity given!

t=t+dt!

Update vorticity in interior!

Solution Strategy!

Limitations on the
time step!

!"t
h2

#
1
4

(|u | + | v |)!t
"

2

Computational Fluid Dynamics	

For l=1:MaxIterations!
 for i=2:nx-1; for j=2:ny-1!
 s(i,j)=SOR for the stream function!
 end; end!
end!

for i=2:nx-1; for j=2:ny-1!
 rhs(i,j)=Advection+diffusion!
end; end!

Solve for the stream function!

Find vorticity on boundary!

Find RHS of vorticity equation!

Initial vorticity given!

t=t+t!

Update vorticity in interior!

v(i,j)=…!

v(i,j)=v(i,j)+dt*rhs(i,j)!

Solution Strategy!

Computational Fluid Dynamics	

The Code!

 1 clf;nx=9; ny=9; MaxStep=60; Visc=0.1; dt=0.02; % resolution & governing parameters	
 2 MaxIt=100; Beta=1.5; MaxErr=0.001; % parameters for SOR iteration	
 3 sf=zeros(nx,ny); vt=zeros(nx,ny); w=zeros(nx,ny); h=1.0/(nx-1); t=0.0;	
 4 for istep=1:MaxStep, % start the time integration	
 5 for iter=1:MaxIt, % solve for the streamfunction	
 6 w=sf; % by SOR iteration	
 7 for i=2:nx-1; for j=2:ny-1	
 8 sf(i,j)=0.25*Beta*(sf(i+1,j)+sf(i-1,j)...	
 9 +sf(i,j+1)+sf(i,j-1)+h*h*vt(i,j))+(1.0-Beta)*sf(i,j);	
10 end; end;	
11 Err=0.0; for i=1:nx; for j=1:ny, Err=Err+abs(w(i,j)-sf(i,j)); end; end;	
12 if Err <= MaxErr, break, end % stop if iteration has converged	
13 end;	
14 vt(2:nx-1,1)=-2.0*sf(2:nx-1,2)/(h*h); % vorticity on bottom wall	
15 vt(2:nx-1,ny)=-2.0*sf(2:nx-1,ny-1)/(h*h)-2.0/h; % vorticity on top wall	
16 vt(1,2:ny-1)=-2.0*sf(2,2:ny-1)/(h*h); % vorticity on right wall	
17 vt(nx,2:ny-1)=-2.0*sf(nx-1,2:ny-1)/(h*h); % vorticity on left wall	
18 for i=2:nx-1; for j=2:ny-1 % compute	
19 w(i,j)=-0.25*((sf(i,j+1)-sf(i,j-1))*(vt(i+1,j)-vt(i-1,j))... % the RHS	
20 -(sf(i+1,j)-sf(i-1,j))*(vt(i,j+1)-vt(i,j-1)))/(h*h)... % of the	
21 +Visc*(vt(i+1,j)+vt(i-1,j)+vt(i,j+1)+vt(i,j-1)-4.0*vt(i,j))/(h*h); % vorticity	
22 end; end; % equation	
23 vt(2:nx-1,2:ny-1)=vt(2:nx-1,2:ny-1)+dt*w(2:nx-1,2:ny-1); % update the vorticity	
24 t=t+dt % print out t	
25 subplot(121), contour(rot90(fliplr(vt))), axis('square'); % plot vorticity	
26 subplot(122), contour(rot90(fliplr(sf))), axis('square');pause(0.01) % streamfunction	
27 end;	

Computational Fluid Dynamics	

17 by 17!
Dt=0.01!
D=0.1!

Results:!

Computational Fluid Dynamics	

Vorticity!

0
5

10
15

20

0

5

10

15

20
0

0.02

0.04

0.06

0.08

0.1

Streamfunction!

Results:!

0
5

10
15

20

0

5

10

15

20
-10

-5

0

5

10

15

20

25

Computational Fluid Dynamics	

17 by 17!
Dt=0.01!
D=0.1!

ui, j = !"
!y

#
" i, j+1 $"i, j$1

2h

vi, j = $
!"
!x

$
" i+1, j $" i$1, j

2h

Results:!

Computational Fluid Dynamics	

9
by

 9
 g

rid
!

17
 b

y
17

 g
rid
!

Results:!

Vorticity! Streamfunction!

Computational Fluid Dynamics	

IN/OUT FLOW!

The driven cavity problem is particularly simple since
there is no in or out flow. In the streamfunction-vorticity
form of the Navier-Stokes equations it is, however,
relatively easy to include specified in and outflow.!
!
An inflow through the right horizontal wall, for example,
can be imposed by increasing the streamfunction
between each grid point by:!
!
For incompressible flow the inflow must matched by
outflow and if we specify the outflow velocity the the
streamfunction must be decreased by the same amount
elsewhere on the boundary!

 !" = u!y

