
Analyzing Random
Vibration Fatigue
Powerful ANSYS Workbench tools help calculate the damage 
of vibrations that lack straightforward cyclic repetition.
By Santhosh M. Kumar, Technical Support Engineer, ANSYS India

Determining the fatigue life of parts under periodic, sinu-
soidal vibration is a fairly straightforward process in which
damage content is calculated by multiplying the stress
amplitude of each cycle from harmonic analysis with the
number of cycles that the parts experience in the field. The
computation is relatively simple because the absolute value
of the vibration is highly predictable at any point in time.

Vibrations may be random in nature in a wide range of
applications, however, such as vehicles traveling on rough
roads or industrial equipment operating in the field where
arbitrary loads may be encountered. In these cases, instan-
taneous vibration amplitudes are not highly predictable as
the amplitude at any point in time is not related to that at 
any other point in time. As shown in Figure 1, the lack of
periodicity is apparent with random vibrations.

The complex nature of random vibrations is demon-
strated with a Fourier analysis of the random time–history
shown in Figure 2, revealing that the random motion can be
represented as a series of many overlapping sine waves,
with each curve cycling at its own frequency and amplitude.
With these multiple frequencies occurring at the same time,
the structural resonances of different components can 
be excited simultaneously, thus increasing the potential
damage of random vibrations.

Statistical Measures of Random Vibration
Because of the mathematical complexity of working

with these overlapping sine curves to find instantaneous
amplitude as an exact function of time, a more efficient way
of dealing with random vibrations is to use a statistical
process to determine the probability of the occurrence of
particular amplitudes. In this type of approach, the random
vibration can be characterized using a mean, the standard
deviation and a probability distribution. Individual vibration
amplitudes are not determined. Rather, the amplitudes are
averaged over a large number of cycles and the cumulative
effect determined for this time period. This provides a more
practical process for characterizing random vibrations than
analyzing an unimaginably large set of time–history data for
many different vibration profiles.

Figure 1. Random vibrations measured for vehicle on a rough road showing perio-
dicity for single, dual and quad disk configuration

Figure 2. Random time–history can be represented as a series of overlapping
sinusoidal curves.
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PSD Analysis Sample Problem 
To illustrate how power spectral density analysis is 

used in calculating the fatigue life of a part undergoing 
random vibration, consider a cantilevered aluminum beam
(Al 6061-T6 [E=68.9 GPa, γ=0.3]) that is 150 mm long by 15
mm wide by 7mm high, as shown in Figure 5. This system
has an overall damping ratio of 5 percent. An instrument
assembly of weight 2N is mounted on the tip of the beam,
and its movement is restricted to only the vertical direction.
The assembly must be capable of operating in a white-noise
random vibration environment with an input PSD level of
0.475 g2/Hz (from 20 to 200 Hz) for a period of 4.0 hours. The
challenge is to determine the approximate dynamic stress
and the expected fatigue life of the assembly.

An important aspect of such a statistical representa-
tion is that most random processes follow a Gaussian
probability distribution. This distribution can be seen in a 
frequency-of-occurrence histogram (sometimes referred 
to as probability density function), which plots the num-
ber of times random acceleration peaks reached certain
levels in small frequency segments called bins. The his-
togram shown in Figure 3 represents a random signal
measured for 10,000 seconds and indicates that this
random signal follows a classic bell-shaped Gaussian
probability distribution. 

Representing the random signals in this manner is
sometimes called a zero-mean Gaussian process, since
the mean value of the signals centers at zero of the his-
togram, as do the random signal responses, which are
usually described in terms of standard deviation (or
sigma value) of the distribution. Figure 3 shows how the
Gaussian distribution relates to the magnitude of the
acceleration levels expected for random vibration. The
instantaneous acceleration will be between the +1σ and
the -1σ values 68.3 percent of the time. It will be
between the +2σ and the -2σ values 95.4 percent of the
time. It will be between the +3σ and the -3σ values 99.73
percent of the time. Note that the Gaussian probability
distribution does not indicate the random signal’s 
frequency content. That is the function of the power
spectral density analysis.

Power Spectral Density
The usual way to describe the severity of damage for

random vibration is in terms of its power spectral density
(PSD), a measure of a vibration signal’s power intensity
in the frequency domain. Looking at the time–history
plot in Figure 4, it is not obvious how to evaluate the
constantly changing acceleration amplitude. The way to
evaluate is to determine the average value of all the
amplitudes within a given frequency range. Although
acceleration amplitude at a given frequency constantly
changes, its average value tends to remain relatively
constant. This powerful characteristic of the random
process provides a tool to easily reproduce random 
signals using a vibration test system.

Random vibration analysis is usually performed over a
large range of frequencies — from 20 to 2,000 Hz, for
example. Such a study does not look at a specific 
frequency or amplitude at a specific moment in time but
rather statistically looks at a structure’s response to a
given random vibration environment. Certainly, we want
to know if there are any frequencies that cause a large
random response at any natural frequencies, but mostly
we want to know the overall response of the structure.
The square root of the area under the PSD curve (grey
area) in Figure 4 gives the root mean square (RMS) value
of the acceleration, or Grms, which is a qualitative meas-
ure of intensity of vibration.

Figure 3. Gaussian distribution (right) of random signal (left)

Figure 4. Random time–history (left), power special density (PSD) of a random time-history (right)

Figure 5. Problem sketch of aluminum beam with a weight at the tip undergoing
white-noise random vibration
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Analysis of the assembly under this white-noise 
environment results in a bending stress contour plot shown
in Figure 6, which shows a maximum 1-σ bending stress of
55.4 MPa (see accompanying table).

Reponse Power Spectral Density (RPSD)
Figure 7 shows a response power spectral density plot

(new in Workbench 12.0) of a node at root having maximum
bending stress at the system’s first natural frequency of 
~56 Hz. The integration of the RPSD curve (the area under
the curve) yields variance of bending stress. The square root
of the variance is 1σ value of the bending stress.

Fatigue Analysis
For fatigue life calculation in the sample problem, root

mean square (RMS) stress quantities are used in conjunction
with the standard fatigue analysis procedure. The following
procedure explains how to calculate the fatigue life using one
of the most common approaches: the Three-Band Technique
using Miner’s Cumulative Damage Ratio [1].

The first step is to determine the number of stress
cycles needed to produce a fatigue failure. When the root of
the beam is connected to the other parts of the structure
without any fillet, the computed alternating stress has to
account for stress concentration effects. The stress con-
centration factor K can be used in the stress equation or in
defining the slope b of the S-N fatigue curve for alternating
stresses. The stress concentration should be used only
once in either place. For this sample problem, a stress con-
centration factor K = 2 will be used in the S-N fatigue curve
as shown in Figure 8, where slope b = 6.4.

The approximate number of stress cycles N1 required to
produce a fatigue failure in the beam for the 1σ, 2σ and 3σ
stresses can be obtained from the following equation:

where:
N2 = 1000 (S1000 reference point)

S2 = 310 MPa (stress to fail at S1000 reference point)

S1 = 55.4 (1σ RMS stress)

b = 6.4 (slope of fatigue line with stress concentration K = 2)

The number of cycles to fail (N) under dynamic stress is
calculated as follows: 

Figure 6. 1-σ bending stress distribution

Standard Deviation Bending Stress Percentage of Occurrence

1σ stress 1x 55.4 = 55.4 MPa 68.3%

2σ stress 2x 55.4 = 110.8 MPa 27.1%

3σ stress 3x 55.4 = 166.2 MPa 4.33%

Figure 7. Response power spectral density of bending stress distribution
for aluminum beam

Figure 8. S-N curve for 6061-T6 aluminum beam with a stress concentration of 2
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damage is generated by the 3σ level, even though it acts
only about 4.33 percent of the time. The 3σ level generates
more than two times as much damage as the 2σ level,
which acts about 27.1 percent of the time. 

The above fatigue cycle ratio shows that about 95.71
percent of the life of the structure is used up by the four-
hour vibration test. This means that 4.29 percent of the life
remains, with the expected life of the structure obtained
from the following calculation: 

Used life + remaining life = 4.0 hrs + [(4.0) x (0.0429)] = 
~4.17 hrs

While fatigue life evaluation under a random process is
highly complicated, Miner’s Rule provides a reasonably
good prediction. In the example, the safety factor of 2 
calculated from structural stress values is not adequate to
ensure fatigue life of the beam for the chosen environment.
When it comes to design for manufacturing, it is recom-
mended that the beam design be changed to provide a
fatigue life of approximately 8 hours, amounting to a safety
factor of 2 on the fatigue life. ■

Reference: 
[1] Steinberg, D.S., “Vibration Analysis for Electronic Equipment,”

John Wiley & Sons Inc., 2000.

The author would like to thank Eng Hui Khor, ANSYS, Inc., for his technical
advice and editorial assistance.

Miner’s Rule
Miner’s cumulative fatigue damage ratio is based on

the idea that every stress cycle uses up part of the fatigue
life of a structure, whether the stress cycle is due to sinu-
soidal vibration, random vibration, thermal cycling, shock
or acoustic noise. 

Miner’s fatigue damage cycle ratio calculation is as follows:

The actual number of fatigue cycles (n) accumulated 
during four hours of vibration testing can be obtained from
the percent of time exposure for the 1σ, 2σ and 3σ values: 

An examination of the above fatigue cycle ratio shows
that the 1σ RMS level does very little damage even though
it is in effect about 68.3 percent of the time. Most of the
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