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Introduction g "
ir "pumped out

* Motivation : New tire noise norms being introduced for tire
industry demands

* Tire Noise Generation Mechanism

* Physics: Air Pumping at entrance and exit in grooves at tire and

road contact
— Air compression and air pumping causes aerodynamic noise

— High and medium frequency range noise (Above 1 Khz)

Cavity resonance
in tyre tube: A

Amplification effect by the horn

Air pumping at the entrance and exit
of the contact patch

Acoustic resonance in the air space
mside the tire

The horn effect created by the tire and
pavement
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Introduction

navement

Adhesion "stick-snap" Radial vibrations Pipe resonances in channels

formed in the tyre foot-print:

Tyre belt/carcass
vibrations:

Adhesion between the tread block and Vibration caused by tread block/pavement
pavement at the exit of the contact 1mpact
patch

Air resonant radiation Sidewall
(Helmholtz resonance) vibrations

Stick-slip (tangential motions)

Vibration of the tire carcass around

Slip-stick motion of the tread block on Sound amplification caused by organ 2
R — pipe and Helmbholtz resonator the tread band and at the sidewall of
geometries within the contact path the contact patch
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Problem Statement

* Predict Aero-acoustics noise in frequency range 10Hz-4KHz due to
rotation of tire interaction with ground and atmosphere at given
speed

— Usually for tire aerodynamic noise the frequency of interest is 1Khz-4khz
range. For this sample frequency range taken was 1-Hz-4Khz

e Simulation Approach

— Computational Aero Acoustics(CAA) approach used which compliments
Experimental approach

— Sliding mesh approach used to rotate the tire

— Tire road contact path restriction modeled using either porous media or
no cell zone present at that location

e Approximation : No deformation of tire included while tire
interacts with road
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Pre-processing : Computational Domain
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Pre-Processing : Meshing
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Pre-Processing : Meshing

© 2015 ANSYS, Inc.

March 19, 2018

L5
Y2 2
‘Ylﬁﬁn
o 1§4§E
AR
KOSETAT
PN

Ay

AV o sl
AVEYNY) =

AL

PRIV XY o
AV

S
R
Sivivase

OIS

5y

T

N\
S

VY
{A,‘

4
v

y:

&

N,

4

I/
o

7
1

=

2,
v
P

i

¥
e

YN

Y,

7
g




.’- »VA. Avm\ ( A\ ] vr.mi (\
LAK e, /4!4'&‘\4' ! /ﬁ»r!v‘
A Vs
PN AN TS AN
N SR AREA A
AP

SRR
DAY TAUEN e S Ny
Y »vln.v‘,"\?ﬂvm_ﬂ» .,VOA. QAL

AR B

SEimee - . : 2 mw.l.«bﬂ\quvli
ava = ISR
4 . 7 3 ¥ 2

S TRV, N TN Tk S 77 S VLSV AATAY % DY AR
T ST AP AT 8 S
0, AV, T SR T NE S SNATI TS

ing

Mesh

o0

—

b

) <

g —

4=

_ o

—_

(5]

- =
°

G

P =

v

>

(%]

=2

e- <

A ﬁ

LR D /
VT % 8
¥ .‘ A\A Py
D AL AR A YFIRE  ©
23 "l

10



ing

Meshi

Pre-Processing

.93

0

39.0

ion
io =

Tetrahedron

28.74mill

Aspect Rat

imum

Maximum Equivolume Skewness

Mesh Elements
Mesh Count

Max

ST

March 19, 2018

© 2015 ANSYS, Inc.

11



Physics & Numerical Setup

Transient Modeling

Turbulence models : sst-kw and DDES

Material
— Air: Ideal Gas

MRF and Sliding Mesh Modeling
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Physics & Numerical Setup : Boundary Conditions
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Pre-processing : Pressure Probes for CAA Modeling
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Results and Discussion




Pressure Variation at Vertical Plane Along the Flow Direction
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Velocity Variation at Vertical Plane Along the Flow Direction
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Pressure Variation on Horizontal Plane at Tire Mid Height

SRSRST S
\ ﬁ‘} ﬁﬁﬁﬁ@‘

EYLYRVAVAYAY.
X0

(W fx& ‘l'i\'l',




Pressure Variation on Horizontal Plane Near Ground
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Probe 1

* Tonal Noise observed for given thread design upstream
* No broadband noise observed
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Probe 2

* Tonal Noise observed for given thread design
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Probe 3

* Tonal noise reduced downstream
* Broadband noise more dominant which is expected to due

Probe 4 flow through thread
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Summary

* High frequency(1KHz-4KHz) pipe resonance and broad band noise captured

— Validated with experimental data
* No tonal noise observed as expected for given tire design

* No deformation of tire included while tire interacts with road

— Lead to ignoring the air compressibility and flow acceleration in grooves due to deformation of grooves
during grooves and road interaction

— Modeling deformation may lead to expensive computational solution but not much effect on the final
accuracy

* Future scope of work

— Capture low frequency(500Hz-1KHz) noise due to tire impact and stick-slip mechanism phenomenon by
Aero-vibro Modeling approach

— Study noise due to interaction of various road condition with different tire pattern
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