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Phased array antennas off er signifi cant advantages for radar design, includ-
ing the ability to steer beams or nulls of the pattern with progressive phase 
shifts along neighboring elements. This ability to steer the beam eliminates 
the need for mechanical steering; it also provides the ability to rapidly 
steer one or more beams or nulls for scanning along multiple planes. The 
number of elements in an array can range from tens to thousands, depend-
ing on the application and frequency. As a result, these geometries are 
inherently complex and large, making them diffi  cult to analyze with tra-
ditional electromagnetic simulation methods, such as fi nite elements or 
method of moments [1]. 

The traditional approach for simulating large phased arrays approximates 
that behavior by assuming an infi nitely large array. In such an approach, 
only the geometric description of a single unit cell is required. Then a 
periodic boundary approximation solution for this single unit cell can be 
developed assuming it is placed in an infi nitely large array. Such infi nite ar-
ray analysis has been the staple of antenna array design in which the solu-
tion for this single unit cell is multiplied by an array factor to determine an 
approximate behavior of the fi nite sized array. The approximate nature of 
this infi nite array solution is a result of the fact that the environment, fi elds 
and coupling experienced by individual elements of the array vary accord-
ing to their locations in the array (interior, edge, corner, etc.). Lacking this 
element-level knowledge introduces challenges in fi nite-sized array design. 
The design of a corporate feed cannot assume that the active s-parameters 
of all elements are the same, and it has to allow for sometimes signifi cant 
diff erences, especially at the edges and corners of the array. This eff ect can 
be mitigated in the design by implementing a band of passive or dummy 
elements around the perimeter of the array, which would allow for the 
corporate feed of the active elements to assume a more equal input — but it 
would require a larger footprint for the array.

To solve larger geometries with a rigorous fi nite element approach, domain 
decomposition techniques off er the ability to use a distributed network of 
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ANSYS has developed an effi  cient iterative domain decomposition-based fi nite element tech-
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compute nodes and leverage larger blocks of distributed memory. It decom-
poses a mesh representation of a model into a series of non-overlapping 
mesh domains that, when each matrix is individually solved with a tradi-
tional direct matrix solver, can collectively be used as a preconditioner for 
an iterative matrix solution to the full model. Previous work has developed 
a generalized scheme in which a given geometry for simulation is meshed 
in whole, and this resulting mesh is automatically subdivided into equal-
sized mesh domains for balanced parallel computing. For antenna array 
solved with this general approach, the meshing processes can be quite 
expensive if the entire array needs to be meshed in general. However, in 
the approach discussed here, the repetitive nature of the geometry for an 
array is leveraged in that only a single unit cell of the array is meshed, with 
this mesh repeated along the array lattice to develop a set of mesh domains 
for the entire fi nite sized array. Each cell of this array has a unique solution 
depending on where it is located in the array, and the resulting full solution 
will take into account the eff ects along the edge of the array. Finally, the 
approach is effi  cient as each individual cell need not be solved at once in 
parallel, and further effi  ciencies are realized by leveraging the repeating 
nature of resulting matrices for certain cells residing in identical environ-
ments.

Domain Decomposition for Finite Arrays
This section describes an iterative non-overlapping domain decomposition 
method (DDM). To apply DDM, the original problem domain is fi rst parti-
tioned into N non-overlapping sub-domains:
  
                                                                                       (1)

Note that in antenna array problems, each antenna element will naturally 
be a domain. Subsequently, in ith domain  , the boundary value problem 
(BVP) is written as
   
 
                                                                                       (2)

                                                                                       (3)

Note that an additional unknown carrying the physical meaning of electric 
current on the boundary, namely
   

is introduced on the domain interface, Γi. Also note that iE  is the electric 
                                                                                     

                                               (4)
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fi eld inside , Ωi ,e i ,= n i ,x E i x n̂ i is the tangential electric fi eld on boundary 
surface of Ωi , and  n̂ is unit outward normal of Ωi . Superscript n stands for 
nth iteration of alternating Schwarz algorithm.  k, n, εr i and µr i are the free-
space wave number, impedance, and relative permittivity and permeability 
of the medium in Ωi , respectively. Equation (3) is generally known as the 
fi rst-order Robin transmission condition. Its right-hand side is defi ned

                                                                                      (5)

in which neigh(i) indicates the neighboring domains of domain i. The above 
system corresponds to a Schwarz-type iteration scheme. 

After the system of equations is appropriately tested through a Galerkin 
testing procedure, a matrix equation results
   

                                             (6)

in which Ki , yi are the system matrix and excitation vectors for Ωi , 
respectively. Ki resembles a system matrix derived from traditional FEM 
using the fi rst-order absorbing boundary condition (ABC) [2]. Solution 
vector and right-hand-side updating vector are given respectively as

                                             (7)

                                             (8)

  
Notice at each iteration that the right-hand side of (6) (c.f. (8)) is updated 
using only the information of surface unknowns. Thus, by introducing 
additional surface unknowns, the information in the entire volume of a 
domain is translated into information on the boundary surface, resulting 
in a tremendous reduction in memory requirements. Furthermore, for an 
array problem in which each array element is identical in terms of geometry 
and mesh, system matrix Ki and excitation vector yi also remain the same 
for all domains, which further reduces memory requirements. The iterative 
process in (6) is trivially parallelizable as new right-hand-side (8) requires 
only information from the previous iteration. We remark that the formu-
lation presented here allows both conformal and non-matching meshes 
across interfaces between adjacent subdomains. In our implementation, 
we have used matching surface meshes on master and slave boundaries 
(similar to those employed in the infi nite array solver).
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Dual Slant Polarized Vivaldi Array
Ultra-wideband radiators are ideal for modern radar systems, which pres-
ent signifi cant challenges in size, weight and cost for multifunctional sys-
tems. One such element is a dual polarized Vivaldi antenna with its large 
bandwidth and potential scan volume in an array confi guration. Figure 1 
depicts a 256-element array of dual-polarized Vivaldi antenna elements 
to be analyzed with this new technique and compared to an existing direct 
solver technique of an explicit representation of the full array. 

Figure 2 shows the single unit cell used to simulate the array. The unit cell 
of the antenna array, including its automatically adapted mesh developed 
in a periodic boundary condition analysis, is virtually duplicated into the 
256-element array geometry. Each unit cell is composed of four individual 
Vivaldi antenna elements arranged in 2X2 cross-polarized set. These ele-
ments are arranged in the unit cell at a 45 degree slant to provide a slant 
polarization to the overall 8X8 rectangular array lattice. The unit cell and 
its duplicates are each treated as individual domain solutions for a DDM 
solution to the entire fi nite antenna array. The electromagnetic interface 
between the individual cells is captured by a Robin transmission condition 
applied on the transverse faces of the cells (4) that, for the unit cell shown, 
correspond to the master/slave boundary pairs. By employing master slave 
pairs, a continuous conformal tetrahedral mesh is eff ectively maintained 
across this interface as an identical triangular mesh is enforced on parallel 
faces of the unit cell.

PMLs are used as absorbers for solution truncation to free space in the +z 
direction. Not depicted in Figures 1 or 2 but present in the solved model 
is a perimeter of bounding air padding cells around the array. These are 
implemented to space the radiating elements a suffi  cient distance from the 
virtual fi rst-order radiation boundary condition sidewalls of the fi nite array.

The calculation of the element domains can be simplifi ed by exploiting 
the repetitive nature of the elements matrices A, in the Ax=b calculation 
for each individual cell. However, not all cells of the array have the same 
matrix, as edge and corner elements reside in a diff erent environment 
depending on how the elements of the perimeter are terminated, and, thus, 
corner elements and elements along an edge each have distinct A matrices. 
Ultimately, to describe a rectangular array, nine unique parent elements 
are required, one interior plus four edge and four corner. With this tech-
nique, the fi nite nature of the array, including edge eff ects, are captured 
since a unique set of fi elds are computed for all elements. Figure 3 shows 
results from the analysis in which the radiation from three distinct cells is 
overlayed on the same plot. The element pattern is highly dependent upon 
the element location in the fi nite-sized array; it is this type of eff ect that 
is missed with a traditional unit cell modeled with only periodic boundary 
conditions. 

 

Figure 1. 256-element dual polarized slant Vivaldi array

Figure 2. Unit cell for Vivaldi array



A direct simulation of the array required 211 GB RAM and over 122 hours 
to complete on a single 256 GB RAM machine. The DDM simulation required 
69 GB total RAM and 12.5 hours computation time on a cluster of 24 
machines, resulting in a simulation that overall required 67 percent less 
RAM and was 9.8 times faster compared to a full array direct solver solu-
tion. The equivalent machines or engines used in the DDM run need only 
enough shared RAM to accommodate the solution for a single unit cell, 
which in this example is approximately 3GB.

Very Large Example
The scalability of the technique on the preceding example was explored by 
simulating the same 2X2 slant polarized unit cell on a 16X16 array lattice. 
This provides for 1,024 total elements in the array. The simulation was 
run on 33 computes nodes. It is worthwhile to note here that these should 
not be physically separate but network compute nodes. A single physical 
machine can be defi ned as multiple compute nodes as long as the shared 
memory on this machine is equal to the number of nodes multiplied by the 
amount of RAM required for a single unit cell analysis. The resulting simula-
tion was quite large, solving a matrix size of over 211 M matrix unknowns 
on 1,024 matrix right-hand sides or excitations. Most remarkable is that 
this simulation required only 111 GB of networked RAM in total to com-
plete. Figure 4 shows a top-down image of the array with an overlayed 3-D 
far fi eld gain patterned under a magnitude and phase tapering that pro-
vides a roughly 20 degree of azimuth main beam [3].
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Figure 3. Far fi eld patterns from three distinct cell types, P1, 
P2 and P3

Figure 4. 1,024-element Vivaldi array with overlayed 3-D gain 
pattern
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