Installed Antenna Performance Modeling on Electrically Large Platforms

Savant provides highly efficient EM analysis of antennas on electrically large platforms. Using the Shooting and Bouncing Rays (SBR) technique, Savant yields full antenna scattering prediction for geometries that are thousands of wavelengths in size, computing:

  • Far-field radiation patterns
  • Near-field distributions
  • Antenna-to-antenna coupling

Savant picks up where full-wave solvers leave off , solving electrically large problems efficiently and accurately.








Please register for Ozen Engineering’s Savant Webinar on Feb 8, 2018 11:00 AM PST at:
After registering, you will receive a confirmation email containing information about joining the webinar.

Subscribe to Newsletter

  • This field is for validation purposes and should be left unchanged.

Zuken & ANSYS — Easy Approach to PCB Design

Recently, Ozen Engineering has partnered with Zuken to offer customers a better and comprehensive solution to PCB design. By coupling Zuken CR-8000, a product-centric design platform which enables engineers/designers to have a superior and user-friendly PCB design experience in terms of minimized modeling procedures and powerful built-in PCB design library, with ANSYS Electromagnetic products – Siwave and Icepak, PCB designers are able to enjoy a revolutionized work experience at design level, and to simulate at another. ANSYS Electromagnetic products help designers verify their designs by analyze circuit EMI, power/signal integrity, temperature and heat transfer in IC packages and printed circuit boards. Really, you wouldn’t find a better match than Zuken and Ansys in the PCB field.


Subscribe to Newsletter

  • This field is for validation purposes and should be left unchanged.

ElectroMechanical Transducer Permittivity in ANSYS Mechanical

EM Transducer is a boundary condition commonly used in the simulations of MEMS devices.  Workbench users can download the Piezo & MEMS ACT module from the ANSYS Customer portal to gain access to EM transduce capabilities.  EM Transducer automatically generates TRANS126 elements in Workbench based on the EMTGEN APDL command.

The EM Transducer object uses permittivity of Air as a default and does not allow users to define their own permittivity.  If a user wants to define a custom permittivity, they can create an APDL command object that updates the 7th real constant of the generated TRANS126 elements.  See the sample code below:



epsr=ARG1                                          ! USED TO DEFINE THE RELATIVE PERMITTIVITY
                                                               ! IN THE DETAILS OF THE COMMAND FILE
fini                                                         ! LEAVE THE SOLUTION PROCESSOR
*get,nelems,elem,,count                   ! nelems = NUMBER OF THESE ELEMENTS
elm=0                                                   ! INITIALIZE ELEMENT NUMBER
*do,i,1,nelems elm=elnext(elm)      ! elm = NEXT HIGHEST ELEMENT NUMBER
*get,rnum,elem,elm,attr,real           ! rnum = REAL CONSTANT ID # ASSIGNED TO ELEMENT elm
*get,r7,rcon,rnum,const,7                 ! r7 = VALUE OF 7th REAL CONSTANT IN REAL CONSTANT SET #rnum
r7_new=epsr*r7                                  ! MODIFIED VALUE TO SUBSTITUTE FOR ORIGINAL VALUE
rmod,rnum,7,r7_new                         ! MODIFY THE 7th REAL OF REAL CONSTANT SET ID #rnum


fini                                                          ! LEAVE PREP7
/solu                                                       ! REENTER THE SOLUTION PROCESSOR

Subscribe to Newsletter

  • This field is for validation purposes and should be left unchanged.


The Simple Way to Put the Remote in ANSYS Remote Solve Manager (RSM)

Last time I introduced you to using RSM to submit to your local machine. This probably seemed pretty similar to the normal way of solving things but you can apply the same workflow to solving to remote computers too! Recall how ergonomic it was to solve with RSM from the last post and compare to how it normally goes on a remote computer:

  • Saving/Archiving the project or drilling down in the file structure to find specific files
  • Copying the files via network share, Dropbox or similar
  • Logging into the remote machine, starting the software, possibly figuring out how to run it in batch, opening your files and starting the solution process
  • Copying the results files back to your computer, deciding how & whether to overwrite and version them
  • Load results into the software

All of these steps are handled for you with RSM. When you don’t need to have a graphics card on a compute machine you can specialize it more towards computation, as noted on our Ansys Hardware Requirements Page

Setting this up just become both more simple and more complex with the R18. The major way it became simpler is that it doesn’t require you to join a Windows Domain, at least for a simple setup that runs on one remote computer. This means that you do not need to have complicated IT infrastructure just to take advantage of your compute resources. A motivated engineer with administrative access to the compute server can set this up on their own. For more complex configurations you will want to get IT involved, such as having multiple machines in a queue or distributed solves across computers.

Here is some terminology:

  • Remote Solve Manager: Integrates directly with Ansys and provides facilities for transferring simulation data between machines and solution monitoring. Meant to be the integration layer between Ansys and existing compute infrastructure.
  • Ansys RSM Cluster (ARC): Added in R18, ARC is the Ansys provided compute infrastructure in the event that you don’t already have a commercial queuing system, such as Microsoft HPC or LSF. Needs to be present when using RSM unless it is replaced by something else.
  • Master & Compute Nodes: ARC nodes can have master or compute roles, suitable for setting up a cluster of machines for distributed runs. For the purposes of this guide, the Master & Compute Nodes will be one and the same.
  • RSM Queue vs ARC Queue: Unfortunately, you will have to set up queues for both your queuing system, such as ARC, AND in RSM. This process is described as mapping cluster queues to RSM queues.
  • Cluster: For the purposes of this guide, each “Cluster” is a single machine. We’re punting on all the more complex setups!

Remote Machine Setup

You will only need to do this once. Afterwards, everyone who wants to submit to this machine just needs to follow the Local Machine Setup instructions further down.

Start an admin prompt

A lot of this will need to be done in the command line. Right click Start Menu -> Command Prompt and select Run As Administrator

For Linux, you will need to make sure to use the sudo command or login as root or a sufficiently privileged account.

Enable the RSM service

Type in the command prompt:


You should see a lot of text go by in the console and no error messages.

For Linux you should be able to replace the enclosing % with a leading $ and the .exe with a .sh

Add ARC tools to the path

ARC is mostly setup via the command line. There are a number of command line utilities that we want to add to the `PATH` so that we don’t have to prefix the entire directory each time:

set PATH=%PATH%;"%Ansys180_DIR\RSM\ARC\tools\%Ansys_SYSDIR%\"

If you did this incorrectly, you’ll get a “___ is not recognized as an internal or external command” message in the subsequent steps.

For Linux, used export and switch out the % variable substitutions as above.

Switch ARC to advanced mode and install the master & node services

In order to do anything with ARC beyond what the Ansys install process does for you automatically, you need to switch it to advanced mode:

arcswitchmode -advanced

This computer will both receive and run jobs so the master and node services need to be enabled:

installservice -arcmaster
installservice -arcnode

If you are so inclined, you can set limits on the number of cores and disk space. Run the following command to see the help for the command on how to do so:

arcconfig node modify

Add ALL THE THINGS to the firewall

You’ll need to use the Advanced Windows Firewall and set filtering rules with port numbers, which is a bit oldschool. To get to the advanced firewall program, I usually press the Start Menu button, type in firewall and select Windows Firewall With Advanced Security.

Once you have it open:

  1. Click Inbound Rules on the left pane
  2. Click New Rule on the right pane
  3. Select Port and click Next
  4. Keep TCP selected and for the port numbers enter `11180,12180,13180,40000-59999`
  5. Select Next three times
  6. Enter a name for the rule (I like to use `RSM/ARC Ports`)
  7. Select Finish

For Linux users, I would recommend to try to use Uncomplicated Firewall (ufw) or get some help from IT here.

Cache the credentials:

You may also cache your password, just to be safe.

And enter your password at the command prompt.

Create a staging folder that is shared

The last thing that you need to do is create a Staging folder somewhere for remote computers to upload analysis files to:

  1. Create a folder named `Staging` (or whatever you would like)
  2. Right click on it and select Share With -> Specific People
  3. In the window that pops up, you can just specify the current user

You should have an address for the folder that looks something like \\computer\Staging

Save this for later.

For Linux, you should look into NFS or SMB.

Local Machine Setup

Compared to the remote machine setup, the local machine is a breeze. Everything is done through the GUI of the new RSM Configuration Utility
There is a new program that you use to add things you can submit to. In the Start Menu, go to `Ansys 18.0 -> Remote Solve Manager -> RSM Configuration`

Once here, follow these steps:

  1. Press the Add Cluster button or right click and select Add Cluster in the tree
  2. Name the cluster (this is what will show up in Workbench/Mechanical)
  3. Enter the hostname on the network in Submit Host and select the operating system
  4. Leave the Cluster type as ARC
  5. Select Apply and then select the File Management tab
  6. Select RSM internal file transfer mechanism (ideally you are on a fast local network)
  7. Enter the staging folder path that you setup a few steps ago
  8. Select Apply and then select the Queues tab
  9. Click the Import/Refresh Cluster Queues button
  10. Enter the credentials (machine\username :: password) like you are logging onto the remote computer and select Ok
  11. If successful the RSM queues will be populated with queues from the cluster. Make sure that the default queue is enabled
  12. Select Apply
  13. Test the queue by pressing the Test button

Your test should be successful after a few moments. Congrats, your new RSM queue is ready to be used!

Keep up to date on hardware and Ansys simulation news and tips by subscribing to our newsletter:


Subscribe to Newsletter

  • This field is for validation purposes and should be left unchanged.

Particle Measurement in CFD

ANSYS Fluent can track the motion of particles through a fluid using the Discrete Phase Model (DPM).  In the most basic approach to implementing particles in a CFD analysis the user specifies:  injection location, speed, mass flow rate, particle size & material.

Particles can interact with boundary walls with options: reflection, escape, trapping, sliding, or forming a film.

DPM offers an impressive range of advanced capabilities, including:

  • Random effects of small-scale turbulent eddies
  • Particle size distribution
  • Two-way interaction where particles influence flow
  • Particle-particle interaction for dense populations
  • Particle heat transfer and vaporization/boiling of droplets & bubbles

“Particle Tracks” is the primary tool to postprocess particle behavior.  In addition to creating a graphical display of particle paths, this tool offers a powerful option to quantify particle behavior.  From the Particle Tracks menu, activate Report Type -> Summary, and Report To -> Console.  The text interface will report statistics for individual boundaries where particles exit the system, including Particle Count, Elapsed Time and Mass Flow.



Subscribe to Newsletter

  • This field is for validation purposes and should be left unchanged.