ANSYS HFSS is a valuable tool in antenna design and platform integration that allow engineers to look beyond the antenna design and begin considering how it interacts with the system or platform into which it is integrated. HFSS Technology offers HFSS Finite Element Method (FEM), HFSS Integral-Equation (IE), HFSS Physical Optics (PO), and HFSS Transient. These antenna simulation methods and tools can be used depending upon the kind of problem you want to solve.

Antenna integration is a complex multi-scale and multi-domain problem. The major challenges in antenna integration modeling are accuracy, electrical size and scale, geometric complexity, platform materials, placement and co-site interference, and solution time. The antenna performance/characteristic can be affected after integrating on the platform (Far-Field pattern degraded, input impedance detuned…). Successful Integration of antenna systems on platforms requires that the design engineers overcome these challenge. Here are some tips and tricks to overcome the challenges:

  • De-feature models obtained from mechanical or electrical CAD tools when possible. (These models typically include geometry details insignificant for electromagnetic analysis)
  • Removing unnecessary model details reduces mesh density and runtime. (Use good engineering judgment to make certain that removed features are electrically insignificant)
  • Using ANSYS Electronics High Performance Computing (HPC) to reduce run time.
  • Using HFSS Hybrid Solution (Integral Equation, Physical Optics) or HFSS integration with SAVANT for large electrical size and scale.


Did you find this useful? Sign up for our newsletter below to receive tips like this and more every month:

[gravityform id=”1″ title=”true” description=”true”]