How to improve integrated antenna performance early in the design cycle?

mehrnooshAntennas often designed in isolated or ideal conditions. But antenna performance can be very different when mounted on realistic and complex platforms. Antenna radiation distortion, reduced antenna efficiency, antenna to antenna coupling, multipath fading are just some of the issues caused by the presence of a complex platform with multiple antennas.

Using ANSYS HFSS and ANSYS HFSS SBR (Savant) is the solution to a reliable wireless product in realistic environment. HFSS is a FEM tool to design and optimize the antenna and HFSS SBR uses Shooting and Bouncing Ray technique to improve integrated antenna performance on electrically large problems. HFSS SBR takes antenna simulation results from HFSS and provides fast EM analysis of the installed antenna on electrically large platforms.

Simulation with HFSS and HFSS SBR:

  • Design and optimize the antenna in HFSS
  • Predict installed antenna performance in HFSS SBR
The figure shows an example of antenna integration on electrically large platform. The 2.3 GHz UHF blade antenna designed and solved in HFSS and the near-field results are imported to HFSS SBR. Then, the far-filed patterns and near-field distributions are computed on the electrically large platform.

The figure shows an example of antenna integration on electrically large platform. The 2.3 GHz UHF blade antenna designed and solved in HFSS and the near-field results are imported to HFSS SBR. Then, the far-filed patterns and near-field distributions are computed on the electrically large platform.

 

By Mehrnoosh Khabiri