Low-frequency electromagnetic field simulation and analysis using FEM for 3-D/2-D structures

- Transient-nonlinear analysis with:
 - Motion-rotation, translational, non-cylindrical rotation
 - External circuit coupling
 - Permanent magnet demagnetization analysis
 - Core loss computation
 - Lamination modeling for 3-D

- AC electromagnetic: analysis of devices influenced by skin/proximity effects, eddy/displacement currents

- Magnetostatic: nonlinear analysis with automated equivalent circuit model generation

- Electric field: transient, electrostatic/current flow analysis with automated equivalent circuit model generation

- Automatic, adaptive mesh technology

- Fault-tolerant meshing algorithms

- Mesh-generation feedback

- GUI performs validation and integrity checks

- Software identifies artifacts with in the imported geometry

- Mesh-based model resolution

- Display of data/visualization of results

- Field visualization and animations (shaded, contour and vector plots)

- Mesh visualization (full, partial)

- Current, induced voltage, flux linkage

- Power loss, stored energy

- Core loss, eddy, excess, hysteresis loss (including the minor loop effects)

- Impedance, inductance, capacitance

- Force, torque

- Custom reports of user-defined solution data

Electromagnetic Field Simulation for the Design of High-Performance Electrical and Electromechanical Products

The depth and breadth of ANSYS electromagnetic field solutions was enhanced by the acquisition of Ansoft by incorporating industry-leading electromagnetic field solvers from Ansoft into the ANSYS software portfolio. These new products cover the full spectrum of electromagnetic analysis and design. ANSYS electromagnetic solutions enable users to leverage best-in-class software technology to predict the behavior of high-performance electrical and electromechanical devices, eliminate prototype iterations and deliver products to market faster. ANSYS electromagnetic solutions address the analysis needs of two distinct application areas:

Electromechanical: Electric motors and generators, transformers, bus bars, relays, solenoids, power electronics, MEMS and magnet design

High-Speed and High-Frequency RF/Microwave Components: on-chip embedded passives, IC packages, PCB interconnects, antennas, RF/microwave components, EMI/EMC and biomedical devices

ANSYS electromagnetic solutions allow the user to gain an understanding of:

- Device performance characteristics under applied loads/excitations and boundary conditions
- Visualization of the electromagnetic field in and around a device
- Joule heating effects and resultant temperatures
- Force distribution and resulting deformation
- Key design parameters: torque, force, resistance, inductance, capacitance, impedance, S parameters and radiated fields/emissions

Electromagnetic Products

ANSYS electromagnetic solutions are a comprehensive offering for electromagnetic analysis.

Maxwell® is a comprehensive software package for low-frequency electromagnetic field simulation. Maxwell software can be used to design 3-D/2-D structures such as motors, actuators, transformers and other electromagnetic and electromechanical devices. Maxwell technology is based on the finite element analysis method and uses Ansoft-pioneered automatic adaptive meshing techniques. This robust meshing
algorithm automatically creates and refines the finite element mesh as the solution converges, streamlining the solution process and making the software very easy to use.

HFSS software is a leading technology for S-parameter extraction, Full-Wave SPICE™ model generation and 3-D electromagnetic field simulation of high-frequency and high-speed components. HFSS software utilizes a 3-D full-wave finite element method (FEM) field solver and Ansoft-pioneered automatic adaptive meshing techniques to compute the electrical behavior of complex components of arbitrary shapes and material properties.

ANSYS® Emag™ software addresses the analysis needs of low-frequency electromagnetics applications such as microelectromechanical devices (MEMS), induction heating and charged particle tracing. ANSYS Emag software can be used within the ANSYS® Workbench™ environment as an independent package or in combination with other ANSYS software suite products such as ANSYS® Mechanical™.

ANSYS® Multiphysics™ software contains all the features of the ANSYS Emag product plus a high-frequency full-wave solver and many other physics capabilities within the ANSYS Workbench environment. ANSYS Multiphysics software is ideal for the evaluation of coupled physics prevalent in electromechanical devices such as electromagnetic-thermal and electromagnetic–thermal–structural coupling.
Applications
The broad portfolio of electromagnetic solutions from ANSYS provides solutions for a wide range of industry applications.

Electromechanical Design
Maxwell software is used for electromagnetic field analysis including magnetic transient with motion, AC electromagnetic, magnetostatic, transient electric field and electrostatic/current flow analysis. Maxwell provides accurate solutions for field parameters such as force, torque, capacitance, inductance, resistance and impedance along with the ability to visualize electromagnetic fields. Applications include motors and alternators, sensors, rotating and linear actuators, power generators, transformers, transmission lines, bus bars, magnetic recording heads and other electromechanical devices.

A key feature in Maxwell software is the ability to generate high-fidelity, equivalent circuit models for use in Simplerter® multi-domain system simulation software. This creates a powerful electromagnetic-based design flow that enables users to combine complex circuits with accurate, physics-based component models to design complete high-performance electromechanical and power electronic systems. This powerful multi-domain design approach allows engineers to accurately model, simulate and validate component, circuit and system-level performance.

High-Speed/High-Frequency Electronic Design
Engineers and designers rely on the accuracy, capacity and performance of HFSS software to design on-chip embedded passives, IC packages, PCB interconnects, antennas, RF/microwave components and biomedical devices. With HFSS software, engineers extract S, Y, Z parameters, visualize 3-D electromagnetic fields and emissions and generate Full-Wave SPICE compatible models to evaluate signal quality.

Engineers use HFSS software for radio frequency (RF) and microwave applications such as the design of high-frequency components and circuits found in the transmitter and receiver portions of communication systems, radar systems, satellites and cellular telephones. Additionally, HFSS software is used to evaluate electromagnetic interference between multiple connectors, transmission lines and vias on printed circuit boards (PCBs) and high-speed components used in computer servers and storage devices, multimedia PCs, entertainment systems and telecom systems.

A key feature within HFSS software is the ability to generate high-fidelity equivalent circuit models for use in Nexxim® high-performance circuit simulation software from Ansoft for time- and frequency-domain applications.

MEMS and Charged-Particle Tracing
ANSYS Emag software is ideal for designing MEMs and charged-particle tracing applications. ANSYS Emag is integrated into the ANSYS Workbench environment and simulates low-frequency electric currents and electric fields in conductive and capacitive systems, as well as magnetic fields resulting from currents or permanent magnets. It contains a comprehensive tool set for static, transient and harmonic low-frequency electromagnetic studies, permitting the simulation of electrostatic, magnetostatic, electromagnetic, electric circuit and current conduction. The program can also simulate charged-particle tracing in both electrostatic and magnetostatic fields. ANSYS Emag software also features a complete range of automatic

Solution Data
- S-parameters (single-ended, differential, de-embedded, renormalized)
- Far-field calculation (2-D, 3-D, gain, angular beam width)
- Port mode and impedance calculation by 2-D-eigenmode solver fields
- SAR calculation
- Mode conversion
- Material losses, radiation losses

Equivalent Circuit Models
- Nexxim, HSPICE®, Cadence® Virtuoso® Spectre® Circuit Simulator and MATLAB® compatible

Data Display/Result Visualization
- S-, Y-, Z-parameter matrix
- Plots
 - 2-D/3-D Cartesian/polar plots, Smith charts and data tables
 - Overlay measurement data
 - Copy vector graphics to clipboard
 - Display trace characteristics, markers, delta markers and X markers
 - Copy and paste of plot definition or data from one report to another
 - Library of report templates: create templates from reports, vice versa
- Port surface characteristic impedance
- Differential S-parameter, TDR display
- 3-D static and animated field plots on any surface
 - Current, electric field, magnetic field
 - Radiation pattern, emissions test
 - Vector display, magnitude display
- Ranged functions – extract calculations such as maximum, minimum and average from a plot or dataset
HFSS Applications

RF and Microwave
Antennas
- Linear wire, slot, horn, patch
- Phased array including array-to-radome interaction
- Personal wireless devices
- RFID

Passive components
- Antenna feed structures
- Filters, circulators, connectors, waveguide transitions
- Embedded passives (i.e., spiral inductors, MIM and MOM capacitors)
- MEMS

RF PCBs
- Wireless devices, guidance systems, mobile base stations

Biomedical
- MRI devices, SAR studies

High Speed
ICs
- Embedded passives
- Spiral inductors
- Transformers
- MOM and MIM capacitors
- Critical interconnects
- Vias
- Clocktrees
- Transitions
- MMICs, RFICs, MEMS

IC packages
- Sip, PpP, CSP, BGA, LTCC, MCM, LTCC, MCM
- Lead-type (QFP, QFN, DIP, SO)
- PGA, BGA (wire-bonded, flip chip)

Printed circuit boards
- Vias, lands
- Transmission lines
- Gridded power/ground planes
- Rigid/build-up/flexible PCBs

Connectors, cables, sockets

calculations for force, torque, inductance, impedance, capacitance, Joule losses, field leakage, saturation and electric and magnetic field strengths.

Multiphysics
Multiphysics solutions from ANSYS provide high-fidelity engineering analysis tools that enable the accurate simulation of complex coupled-physics behavior. ANSYS multiphysics solutions combine industry-leading solver technology for all physics disciplines — structural mechanics, heat transfer, fluid flow and electromagnetics — with the open and adaptive ANSYS Workbench environment, flexible coupled-physics simulation methods and parallel scalability. Together these cutting-edge technologies form the foundation for comprehensive multiphysics simulation capable of solving industry’s most complex engineering challenges.

ANSYS multiphysics solutions deliver two proven solution techniques to solve multiphysics problems — the direct coupled-field elements and the ANSYS Multi-field solver. These approaches provide flexible simulation methods to solve a broad range of both direct and sequentially coupled multiphysics problems such as Joule heating, piezoelectricity, electrostatic actuation, induction heating, RF heating, and electro-thermal-structural interaction prevalent in electromechanical devices. Together, the two solution techniques provide the appropriate solution technology to solve an extremely broad range of industry applications. Devices such as thermoelectric coolers, accelerometers, integrated circuits, piezoelectric sensors, MEMs and many other devices are all readily analyzed with ANSYS multiphysics solutions.

The ANSYS Advantage
With the unequalled depth and unparalleled breadth of our engineering simulation solutions, companies are transforming their leading edge design concepts into innovative products and processes that work. Today, 97 of the top 100 industrial companies on the “FORTUNE Global 500” invest in engineering simulation as a key strategy to win in a globally competitive environment. They choose ANSYS as their simulation partner, deploying the world’s most comprehensive multiphysics solutions to solve their complex engineering challenges. The engineered scalability of our solutions delivers the flexibility customers need, within an architecture that is adaptable to the processes and design systems of their choice. No wonder the world’s most successful companies turn to ANSYS — with a track record of almost 40 years as the industry leader — for the best in engineering simulation.